R input and output for authoring statistics problems in
LON CAPA

Marianne Huebner and Stuart Raeburn, Michigan State University
November 19, 2014

LON CAPA is a web based software for class management, exam or homework
questions that can be taken online or printed for a paper test [1]. Questions for these
tests can be created in the authoring space. Questions are written in PERL but can
be interfaced with R. This comes in very handy for statistics questions.

The tutorial Authoring Statistics Problems in LON-CAPA using R by M. Huebner and S.
Raeburn [2] provides examples of statistics and probability problems in LON CAPA
including data description, probability, inference, and regression. Some of the
questions require importing a data vector into R, reading a simulated random
sequence from R, or identifying quantities from output of R functions. The purpose
of this document is to explain steps involved for importing data into R and
extracting information from R output.

A LON CAPA problem is structured with a script for the coding of the problem, a text
portion where questions can be asked and a response field. Data transfer from R to
Perl and vice versa is coded in the script portion, and we consider how to write the
output in the text portion of the problem.

<problem>

<script type="loncapa/perl"”>

In the script portion variables are defined and answers are
calculated

</script>

<startouttext/>
In the text portion the problem is described.
<endouttext/>

The LON CAPA script for problems is written in Perl. However it interfaces
with R using &cas, if the output is a scalar, and &cas_hashref, if the output is a
vector, matrix, or a list.

Reading scalars from R output

Since the R output is a scalar, &cas is used here.

1. After importing values of variables

A variable that has been assigned a value in Perl can be read into R, and operations
can be performed within R.

$a=1;
$b=2;
$result = &cas("R", "$a+$b");

Only the last output of the R operations is saved. In the example below, only the
value of y is saved as the $result.

$a=1;
$b=2;
$result = &cas("R", "x<-$a*$b; y<-%a+$b");

2. After importing data lists

A data list defined in Perl can be read into R for further calculations. In the code
below values of a random variable X and the corresponding probabilities P(X = x)
are read into R and the expectation (scalar product) is calculated

$X = (1)213:415);
$probdist = (0.1,0.2,0.3,0.05,0.35);
$expectation = &cas("R", "p<-c($probdist); x<-c($x), x%*%p");

In summary

$result = &cas("R", "R code goes here. Last number is saved as
output.");

Reading arrays from R output

1. Simulate a random sequence in R to use in statistics problems

When sampling from probability distributions in R, it is important to set the seed.
This will make sure that students have the same problem with each try. If the
random seed is not fixed, a new randomization is generated each time the student
submits an answer.

set seed
$seed = &random(1,200000000,1);

Generate a value for a mean and standard deviation, sampled from a
uniform distribution in Perl

$mu = &random (2,7, 1);

$sd = &random (0.1,0.5, 0.05);

The Perl function &random has the lower bound as the first argument, the upper
bound as a second argument, and the step size as the third argument. For example,
$sd = &random (0.1,0.5, 0.01); will be uniformly distributed in the interval
[0.1,0.5] and values®©.1, ©.15, ©.2, ©.25, ...,0.45, 0.5 can be chosen as
the value for $sd.

Next we simulate a random sequence from the normal distribution with the
specified mean and standard deviation. Note that $dump is a version of $data, which
can be used for debugging.

length of sequence

$n = 10;

generate uniformly distributed random numbers from Uniform(25,100).
($data,$dump)= &cas_hashref("R", "set.seed($seed);rnorm($n,mean=$mean,
sd=$sd);");

2. Indexing the array to use in the text of the statistics problem

Since To be able to write this sequence into the text of a problem, it needs to be
converted to and array in Perl.

@sample = &cas_hashref_array($data);

In the problem test or in html tables this list of 10 numbers can be accessed by
writing

$sample[0], $sample[1l], $sample[2], $sample[3], $sample[4], $sample[5],
$sample[6], $sample[7], $sample[8], $sample[9]

where the index 0 extracts the first element of the list.
3. Use the random sequence as R input

In order to use this dataset in R for further operations or to write this list of data
without referencing each one, the Perl array needs to be converted into a string of
comma separated values.

$samplevalues = join(',',@sample);

This dataset can be written in the text as a list of numbers without further indexing,
namely $samplevalues.

37.43,56.62,19.41,34.57, -
1.05,18.96,6.8,3.71,29.06,30.94,43.42,16.9,43.81,23.69,7.89,30.02

This array can now be used further in R, for example, to calculate the sample mean.

$xbar = &cas("R","x<-c($samplevalues); mean(x)");

4. Vector calculations in R when the output is also a vector

For results of calculations in R with two data lists, we also need the sequence of
@cas_hashref, &cas_hashref_array, and possibly join. For example, taking the
element-wise difference of the vector elements:

($datadiff,$dumpdiff)= &cas_hashref("R","a<-c($1listl); b<-c($list2); a-
b")

@diff = &cas_hashref_array($datadiff);

$difflist = join(',',@diff);

In summary three lines of code are required to work with array output from R.

($data,$dump)= &cas_hashref("R", "R code for vector output");
@x = &cas_hashref_array($data);
$xvalues = join(',',@x);

Reading output from R procedures

Output from R procedures is saved as $data and as $dump. The $dump list is not
further used, but can be displayed to identify the structure of the output or for
debugging.

For example, we calculate numerical summaries in R and read the output. The order
of the data summary is minimum, first quartile, median, third quartile, and
maximum, e.g for a list of numbers sampled from a normal distribution.

#i# Min. 1st Qu. Median Mean 3rd Qu. Max.
4.79 4.88 5.00 5.02 5.11 5.41

Using a previously generated random sequence in LON CAPA, $samplevalues, we
calculate the summary statistics below.

($summary, $summarydump)= &cas_hashref("R","a<-c($samplevalues);
summary(a)");

Writing $summarydump in the text results in the following output:

$VARL = { '1' => '3.83', '2' => '4.752', '3' => '5.735', '4' =>
'5.423', '5' => '6.012', '6' => '6.71' };

The minimum and first quartile are extracted as follows:

@numbers = &cas_hashref_array($summary);
$min = $numbers[0]; # this is 3.83 from above
$91 = $numbers[1]; # this is 4.752 from above

However some output from R procedures are lists of named variables, and some of
these have length longer than one. One example is confidence intervals and
hypothesis test that has been described in the tutorial by M. Huebner and S. Raeburn
Authoring Statistics Problems in LON-CAPA using R. Below we describe a linear
regression example using a built-in R dataset.

In R this looks as follows.

library(car)
fit<-1Im(prestige~education, data=Prestige)
summary (fit)$coefficients

Hi Estimate Std. Error t value Pr(>|t])
(Intercept) -10.732 3.677 -2.919 4.343e-03
education 5.361 0.332 16.148 1.286e-29

In LON CAPA we need to load the library car when calculating the regression fit.

($regdata, $regdump) = &cas_hashref("R","fit<-1m(prestige~education,
data=Prestige); summary(fit);", "car");

The structure of the output is as follows, but due to the length of the output
residuals were omitted.

$VAR1 = { 'call' => \{ '1' => '"lm', '2' => 'prestige ~ education’, '3’
=> 'Prestige’' }, 'terms' => \{ '1' => '~', '2' => ‘'prestige’', '3' =>
'education' }, ‘'coefficients' => \{ '1' => \{ '1' => '-10.73198', '2'
=> '3.677088', '3' => '-2.918609', '4' => '0.004343443' }, '2' => \{
'1' => '5.360878', '2' => '@.3319882', '3' => '16.1478', '4' =>
'1.286264e-29"' } }, ‘'aliased' => \{ '1l' => 'Unrecognized output’,
'Unrecognized output' => ‘'Unrecognized output' }, ‘'sigma' =>
'9.103291', 'df' => \{ '1' => '2', '2' => '1@0', '3' => '2' },
'r.squared' => '0.7228007', 'adj.r.squared' => '0.7200287"',
'fstatistic' => \{ 'value' => '260.7513', 'numdf' => '1l', 'dendf' =>
'100' }, 'cov.unscaled' => \{ '1'" => \{ '1' => '@.1631591', '2' => '-
0.01428149"' }, '2' => \{ '1' => '-0.01428149', '2' => '0.00132999' } }
}s

The $regdump output is organized as follows:
e formula, response (prestige), and predictor (eduation)

e residuals for each data point (in this dataset these are names of professions)
which is the longest part of the output depending on the sample size. Omitted
above.

e coefficients, standard errors, and p values for both intercept and slope
e residual standard error

e degrees of freedom

e coefficient of variation
e Ftest
In particular, the output for the table of coefficients is as follows:

‘coefficients' => \{

"1' => \{ '1' => '-10.73198', '2' => '3.677088', '3' => '-2.918609',
'4' => '0.004343443' },

2" =>\{ '1' => '5.360878', '2' => '@©.3319882', '3' => '16.1478', '4'
> '1.286264e-29"' }

|l

The intercept is in the first row ('1' =>\{...}) and the predictor in the second row
('2'=>\{...}).We can extract the coefficient, standard error, and p value for the
predictor education by accessing 'coefficients’, then the second row, and lastly
choosing estimate ('1'), standard error ('2"), t statistic ('3'), and the p value ('4") for
testing whether the slope is 0 or not.

$slope=&cas_hashref_entry($regdata, "coefficients", "2", "1");
$slopeSE=&cas_hashref_entry($regdata, "coefficients", "2", "2");
$slopeTstat=&cas_hashref_entry($regdata, "coefficients", "2", "3");
$slopePval=&cas_hashref_entry($regdata, "coefficients", "2", "4");

Instead we could read the array for the coefficients for education and then extract
the slope from this quantity:

@education=&cas_hashref_array($regdata, "coefficients"”, "2");
$slope = $education[0];

In summary use the $dump portion of the output to identify the structure of the
array and identify variable names. This can then be used to extract specific elements
of the R output. The structure for generating output from R procedures is

($data, $dump) = &cas_hashref("R","code for R procedure;", "package
name");

The last part can be omitted if no R package needs to be loaded. Scalar output is read
with &cas_hashref_entry and arrays with &cas_hashref_array.

Conclusion

In this document we describe steps involved for importing data into R and
extracting information from R output that can be scalars, arrays, or lists from R
procedures.

References

[1] LON CAPA Documentations: http://www.lon-capa.org/documentation.html

[2] M. Huebner and S Raeburn. Authoring Statistics Problems in LON-CAPA using R
(2014) http://www.lon-capa.org/presentations/loncapa_statsR.pdf

